Skip to main content
Log in

Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We demonstrate the possibility to improve the signal-to-noise ratio of superconducting gravity time-series by correcting for local hydrological effects. Short-term atmospheric events associated with heavy rain induce step-like gravity signals that deteriorate the frequency spectrum estimates. Based on 4D modeling constrained by high temporal resolution rain gauge data, rainfall admittances for the Vienna and Membach superconducting gravity stations are calculated. This allows routine correction for Newtonian rain water effects, which reduces the standard deviation of residuals after tidal parameter adjustment by 10%. It also improves the correction of steps of instrumental origin when they coincide with step-like water mass signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bower DR, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Int 106:353–369

    Article  Google Scholar 

  • Crossley D, Jensen O, Hinderer J (1995) Effective barometric admittance and gravity residuals. Phys Earth Planet Int 90: 355–358

    Google Scholar 

  • Crossley DJ, Xu S, van Dam T (1998) Comprehensive analysis of 2 years of SG data from Table Mountain, Colorado. In: Ducarme B, Pâquet P (eds) Proc. 13th Int. Symp. Earth Tides, Brussels, July 22–25, 1997, pp 659–668

  • Francis O, Van Camp M, van Dam T, Warnant R, Hendrickx M (2004) Indication of the uplift of the Ardenne in long term gravity variations in Membach (Belgium). Geophys J Int 158: 346–352

    Article  Google Scholar 

  • Götze HJ, Lahmeyer B (1988) Application of three dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108

    Article  Google Scholar 

  • Harnisch M, Harnisch G (2002) Seasonal variations of hydrological influences on gravity measurements at Wettzell. B Inf Marèes Terr 137:10849–10861

    Google Scholar 

  • Harnisch M, Harnisch G (2006) Hydrological influences in long gravimetric data series. J Geodynamics 41:276–287

    Article  Google Scholar 

  • Imanishi Y (1999) Present status of SG T011 at Matsushiro, Japan. In: Ducarme B, Barthélemy J (eds) Proceedings of Workshop: “High Precision Gravity Measurements with Application to Geodynamics and Second GGP Workshop”, Luxembourg, Cah Cent Eur Géodyn et de Séismol 17:97–102

  • Kroner C (2002) Zeitliche Variationen des Erdschwerefeldes und ihre Beobachtung mit einem supraleitenden Gravimeter im Geodynamischen Observatorium Moxa, Habilitationsschrift, Chemisch-Geowissenschaftliche Fakultät, FSU Jena, 149 pp

  • Meurers B (2000) Gravitational effects of atmospheric processes in SG gravity data. In: Ducarme B, Barthélemy J (eds) Proceedings of Workshop: “High Precision Gravity Measurements with Application to Geodynamics and Second GGP Workshop”, Luxembourg, 1999, Cah Cent Eur Géodyn et de Séismol 17: 57–65

  • Müller T, Zürn W (1983) Observation of gravity changes during the passage of cold fronts. J Geophys 53: 155–162

    Google Scholar 

  • Renka RJ (1996) ALGORITHM 751. TRIPACK: Constrained two-dimensional Delaunay Triangulation Package. ACM Trans Math Software 22(1): 1–8

    Article  Google Scholar 

  • Simon D (2002) Modelling of the field of gravity variations induced by the seasonal air mass warming during 1998–2000. B Inf Marées Terr 136:10821–10836

    Google Scholar 

  • Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput Geosci 31(5):631–640

    Article  Google Scholar 

  • Van Camp M, Francis O (2006) Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J Geodesy: doi 10.1007/s00190-006-0110-4

  • Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111: B10403 doi:10.1029/2006JB004405

    Article  Google Scholar 

  • Warburton RJ, Goodkind JM (1977) The influence of barometric pressure variations on gravity. Geophys J R astr Soc 48: 281–292

    Google Scholar 

  • Wenzel HG (1996) The nanogal software: Earth tide data processing package ETERNA 3.30. B Inf Marées Terr 124:9425–9439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Meurers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meurers, B., Van Camp, M. & Petermans, T. Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis. J Geod 81, 703–712 (2007). https://doi.org/10.1007/s00190-007-0137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0137-1

Keywords

Navigation